

The Future of Network Management (of the Future) An Overview of Low-Latency, HighThroughput AI with Programmable Devices

Luciano Paschoal Gaspary - UFRGS, Brazil

paschoal@inf.ufrgs.br · http://www.inf.ufrgs.br/~paschoal · @lpgaspary

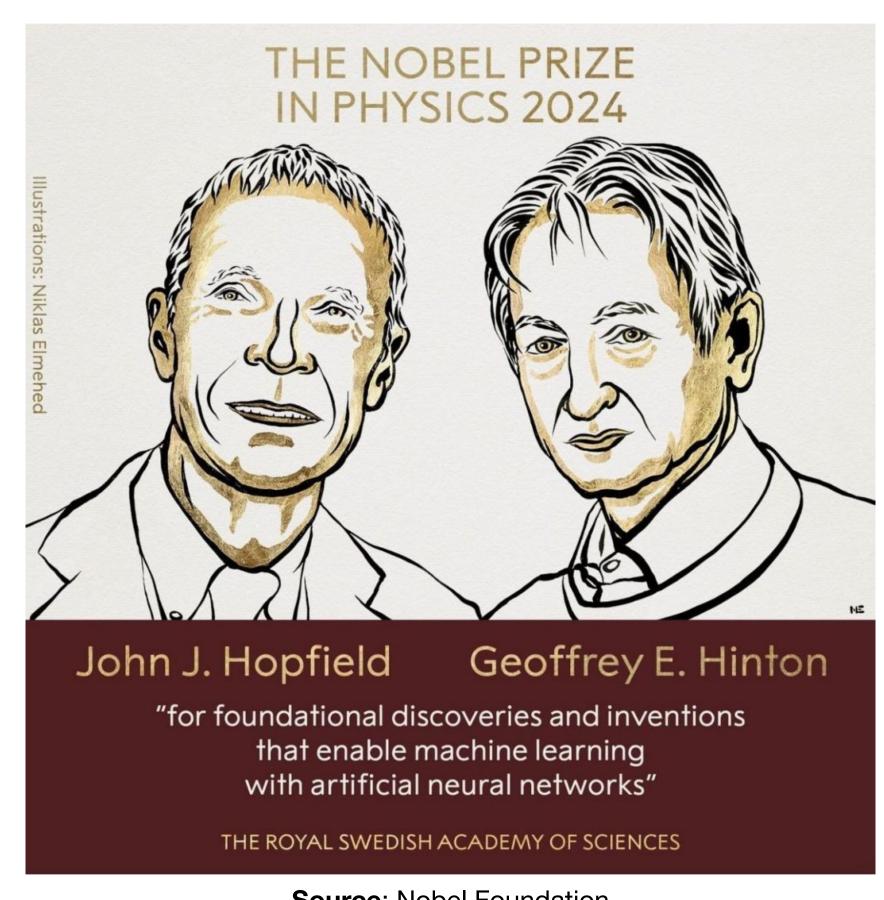
WTR 2025 · 22 October 2025 · Porto Alegre

Initial disclaimer & scope

- The scope is:
 - Al/ML for networks, not networks for Al/ML
 - aspects that can be addressed mainly in the data plane, not in the control or management planes (multi-dimensional problem)

Initial disclaimer & scope

- The scope is:
 - Al/ML for networks, not networks for Al/ML
 - aspects that can be addressed mainly in the data plane, not in the control or management planes (multi-dimensional problem)
- In this talk, I sometimes take a provocative look at AI/ML for networking :-)



Source: Nobel Foundation

The big "race" towards AI/ML for networks

- The race towards integrating Artificial Intelligence and Machine Learning into Computer Networks is very intense
- If you Google these keywords, you will uncover millions of studies (>2.0M)

The big "race" towards AI/ML for networks

 The race towards integrating Artificial Intelligence and Machine Learning into Computer Networks is very intense

 If you Google these keywords, you will uncover millions of studies (>2.0M)

 Are there clear "killer" networking apps that are in need of more Al/ML? Are we lagging behind?

Source: https://www.modernanalyst.com/Resources/BusinessAnalystHumor/tabid/218/ID/5392/Solutions in Search of Problems.aspx

Why AI/ML for networks?

• What are the "killer" apps for Al/ML? Potentially the ones "where we are already implicitly employing machine learning, maybe badly" (Schapira 2023)

Detection of <you name it> from data

Identifying existing patterns or anomalies in data, often in the present or recent past

Prediction of <you name it> from data

Forecasting **future outcomes** or **events** based on historical data

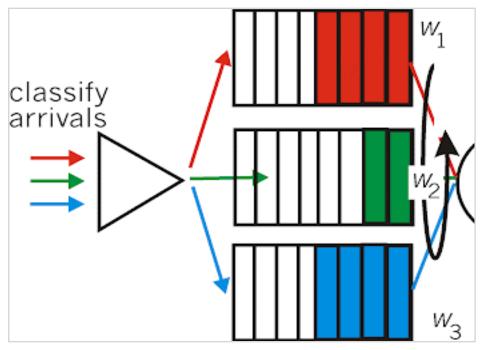
Raouf Boutaba, M.A. Salahuddin, Noura Limam, et al.: A Comprehensive Survey on Machine Learning for Networking: Evolution, Applications and Research Opportunities. J Internet Serv Appl 9, 16 (2018).

Why AI/ML for networks?

Carry out intrusion detection by looking at unexpected events

Source: https://towardsdatascience.com

Source: Kurose and Ross, 2020.

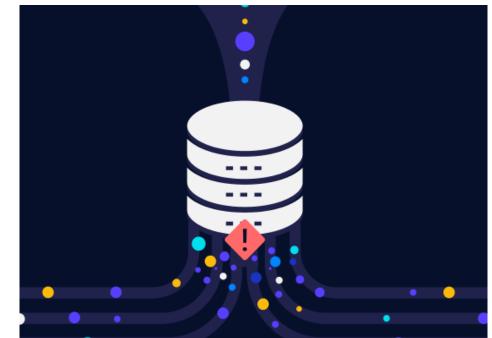


Perform traffic classification based on patterns existing on network packets

Execute traffic
engineering based
on predicted future
traffic demands

Source: https://engineering.nyu.edu

Source: https://granulate.io



Run congestion control based on the prediction of the bottleneck bandwidth

Make video
streaming decisions
based on predicted
download times of
video chunks

Source: https://www.forbes.com

+ resource management

+ fault management

+ channel modeling

- ...

Raouf Boutaba, M.A. Salahuddin, Noura Limam, et al.: A Comprehensive Survey on Machine Learning for Networking: Evolution, Applications and Research Opportunities. J Internet Serv Appl 9, 16 (2018).

Michael Schapira: Al for networking, and networking for Al. The Networking Channel, 2023. Available at https://www.youtube.com/watch?v=i6DvbflUPSg.

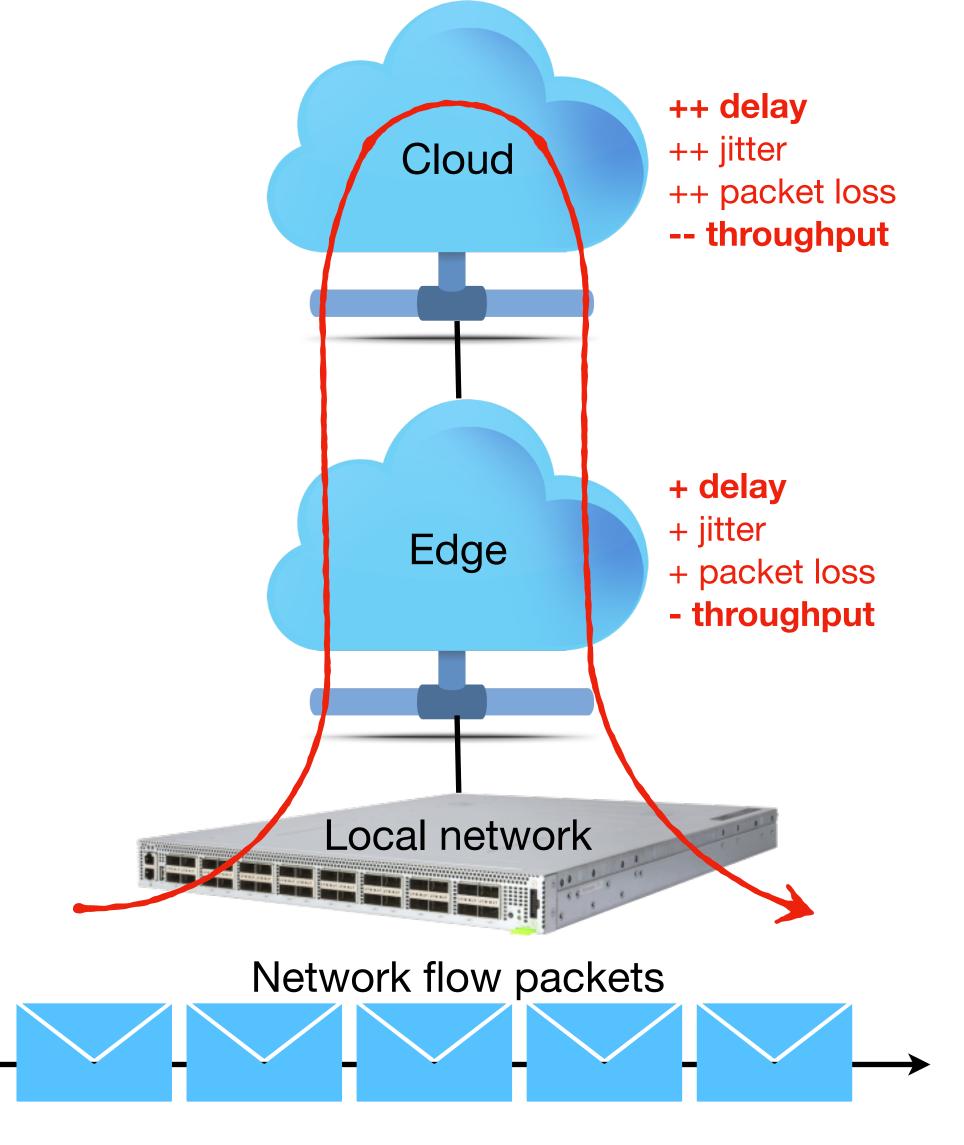
What are we striving for?

- The ultimate goal of Al/ML for networks is higher accuracy and quick responses
- Our community has excelled in achieving high-quality models, but we are falling short of making it fast and promptly

Source: RunCzech

What are we striving for?

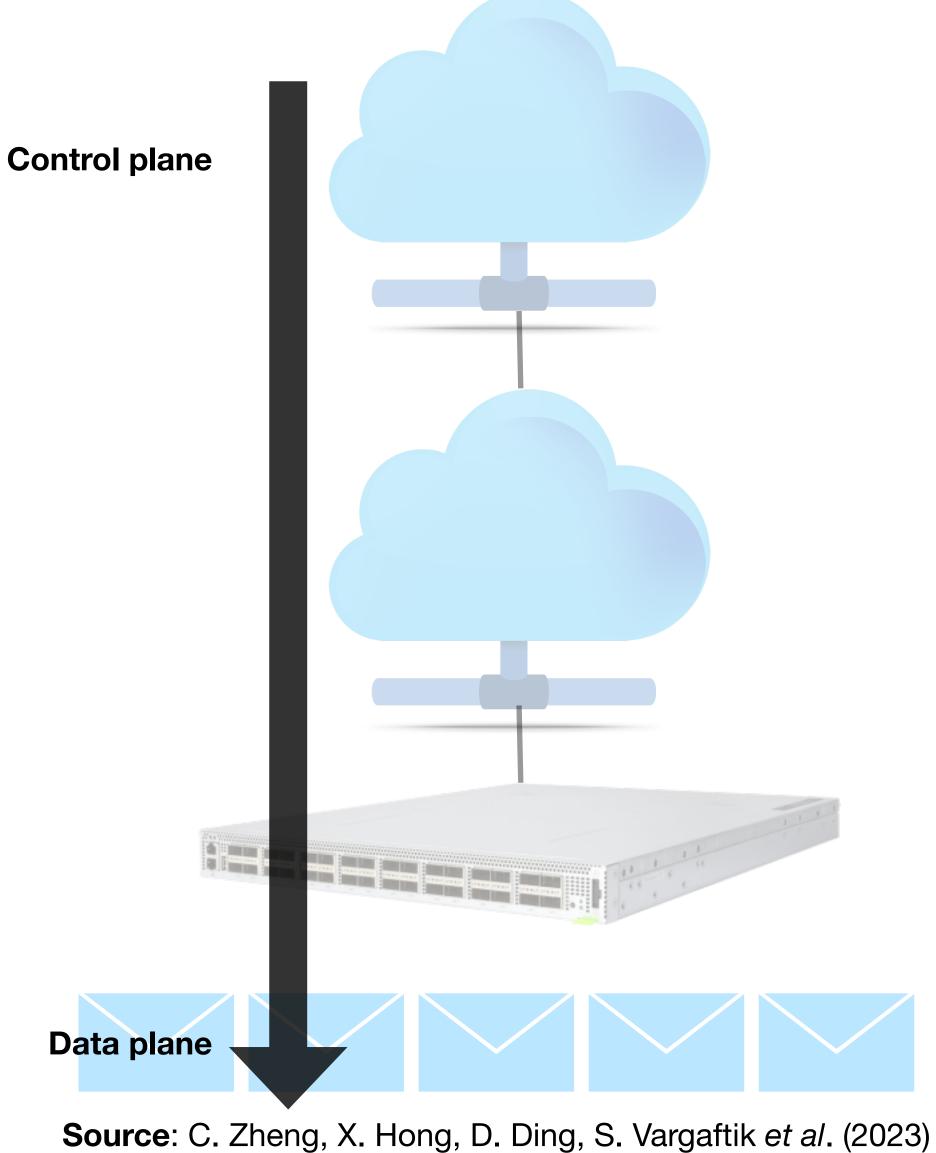
- The ultimate goal of Al/ML for networks is higher accuracy and quick responses
- Our community has excelled in achieving high-quality models, but we are falling short of making it fast and promptly
- Long control loops, requirements of Al/ML techniques (e.g., training)



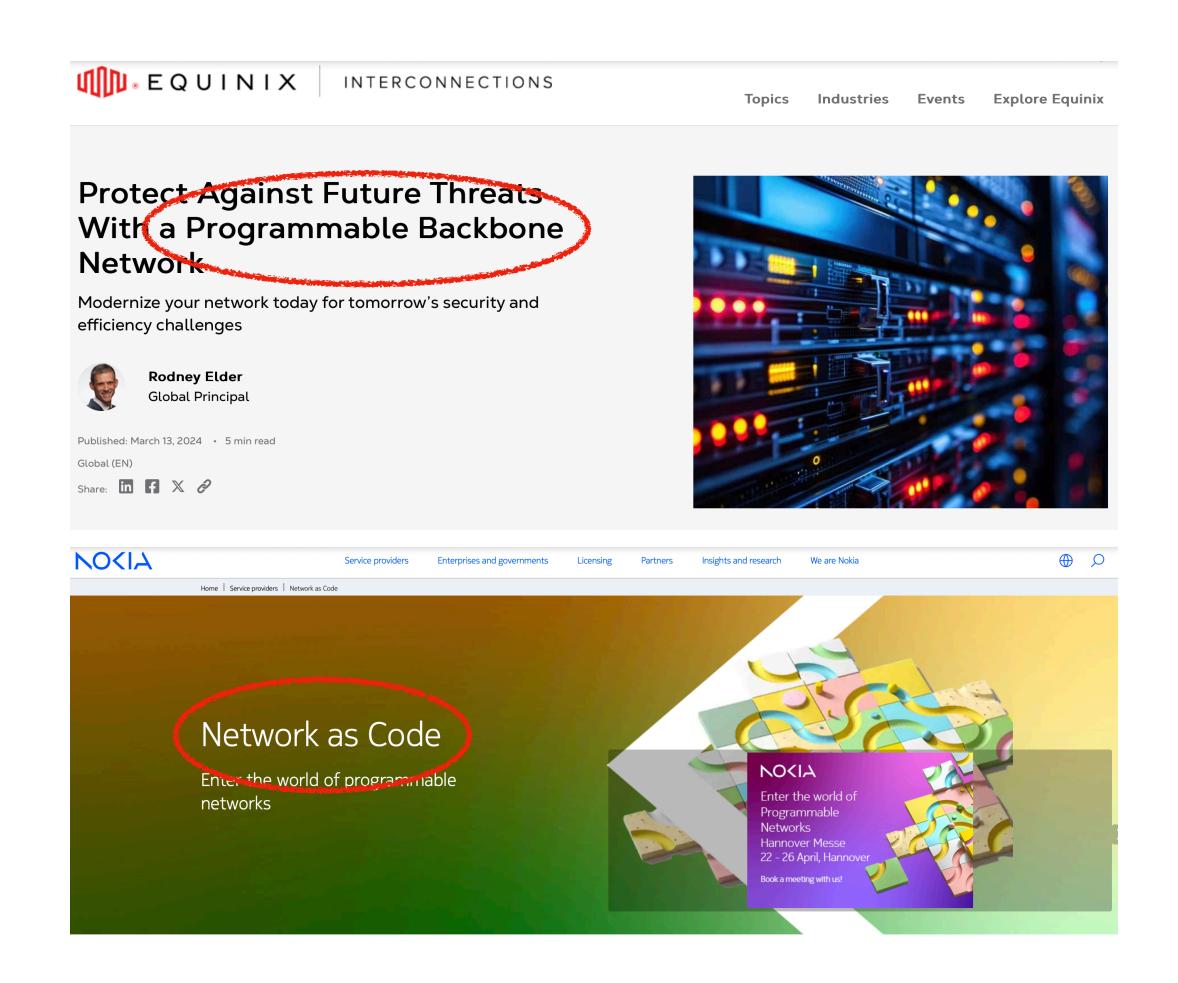
Filippo Poltronieri, Cesare Stefanelli, Mauro Tortonesi, and Mattia Zaccarini: Reinforcement Learning vs. Computational Intelligence: Comparing Service Management Approaches for the Cloud Continuum. Future Internet 15, no. 11: 359 (2023).

What are we striving for?

- The ultimate goal of Al/ML for networks is higher accuracy and quick responses
- Our community has excelled in achieving high-quality models, but we are falling short of making it fast and promptly
- Long control loops, requirements of Al/ML techniques (e.g., training)
- Push needed from control plane-based ML to in-network ML



The emergence of programmable networks



Software-Defined Networks Programmable Networks Programmable Data Planes (PDPs)

Connor Craven | Associate Editor July 20, 2021 9:00 AM

Announcing Next-Generation P4-Programmable Datacenter Switching

SECURITY ZERO TRUST SASE SD-WAN EDGE CLOUD DATA CENTER SILICON NETWORK

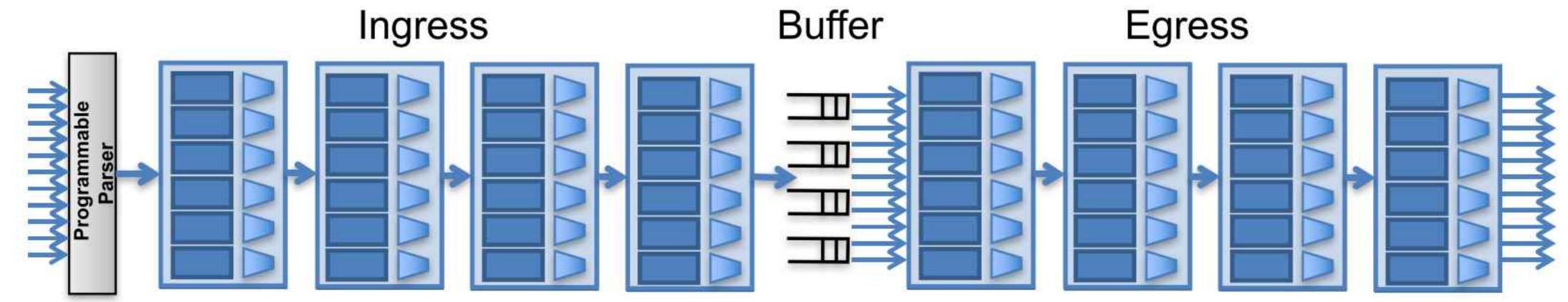
14 de outubro de 2024

Oxide is excited to announce a partnership with Xsight Labs to build the next generation of P4-programmable networks on the Oxide Cloud Computer. We'll be building around the just-announced X2 chip from Xsight. At-Oxide, partnership is foundational to what we do. Working with the Xsight team has been amazing and was a key component to our decision. We're really looking forward to the advances we'll be making in programmable data-plane networking together. For an inside look at how we've leveraged programmable networks in the Oxide platform, check out our Rack-Scale Networking Oxide and Friends episode. More details to come on an open-source P4 compiler implementation for the X2.

Programmable network logic in hardware

- Hardware support to accommodate new software
- Per-packet traffic visibility
- Line-rate processing (sub-microsecond latency)

10's Tbps
aggregated throughput
10's Billions
packets per second

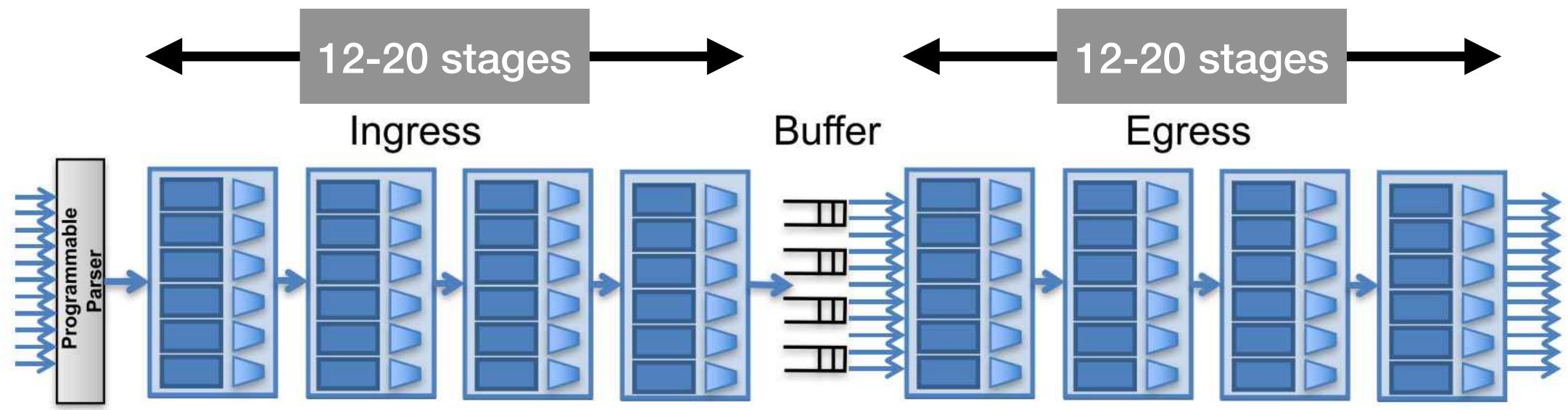


Source: https://www.infoq.com/presentations/pisa-asic-p4/ apud https://p4.org/

C. Zheng, X. Hong, D. Ding, S. Vargaftik, Y. Ben-Itzhak, N. Zilberman: In-Network Machine Learning Using Programmable Network Devices: A Survey. IEEE Communications Surveys & Tutorials (2023).

Pat Bosshart, Glen Gibb, Hun-Seok Kim, George Varghese, Nick McKeown, Martin Izzard, Fernando A. Mujica, Mark Horowitz: Forwarding Metamorphosis: Fast Programmable Match-action Processing in Hardware for SDN. SIGCOMM 2013: 99-110.

Programmable network logic in hardware

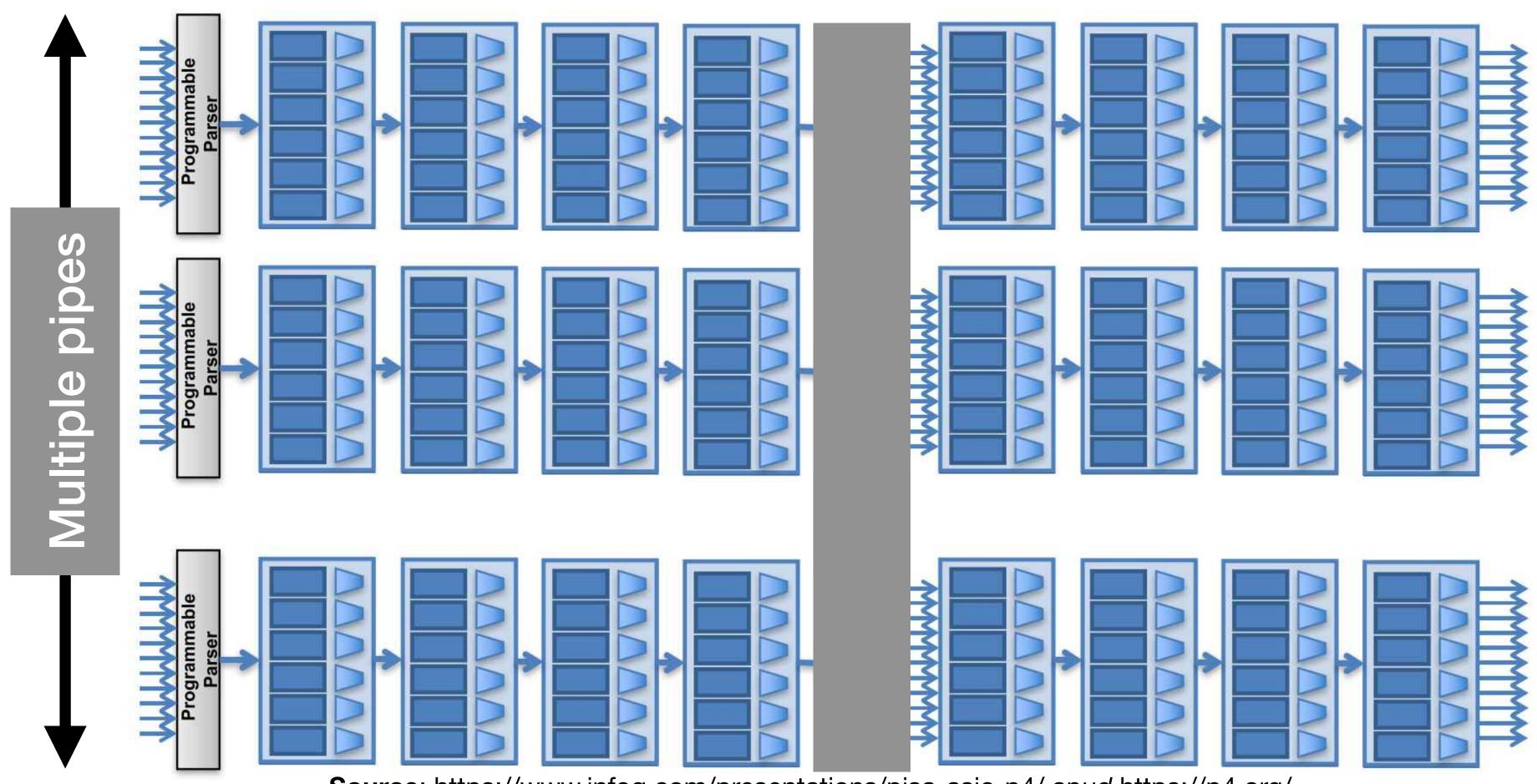


Source: https://www.infoq.com/presentations/pisa-asic-p4/ apud https://p4.org/

C. Zheng, X. Hong, D. Ding, S. Vargaftik, Y. Ben-Itzhak, N. Zilberman: In-Network Machine Learning Using Programmable Network Devices: A Survey. IEEE Communications Surveys & Tutorials (2023).

Pat Bosshart, Glen Gibb, Hun-Seok Kim, George Varghese, Nick McKeown, Martin Izzard, Fernando A. Mujica, Mark Horowitz: Forwarding Metamorphosis: Fast Programmable Match-action Processing in Hardware for SDN. SIGCOMM 2013: 99-110.

Programmable network logic in hardware



Source: https://www.infoq.com/presentations/pisa-asic-p4/ apud https://p4.org/

C. Zheng, X. Hong, D. Ding, S. Vargaftik, Y. Ben-Itzhak, N. Zilberman: In-Network Machine Learning Using Programmable Network Devices: A Survey. IEEE Communications Surveys & Tutorials (2023).

Pat Bosshart, Glen Gibb, Hun-Seok Kim, George Varghese, Nick McKeown, Martin Izzard, Fernando A. Mujica, Mark Horowitz: Forwarding Metamorphosis: Fast Programmable Match-action Processing in Hardware for SDN. SIGCOMM 2013: 99-110.

Programmable network devices

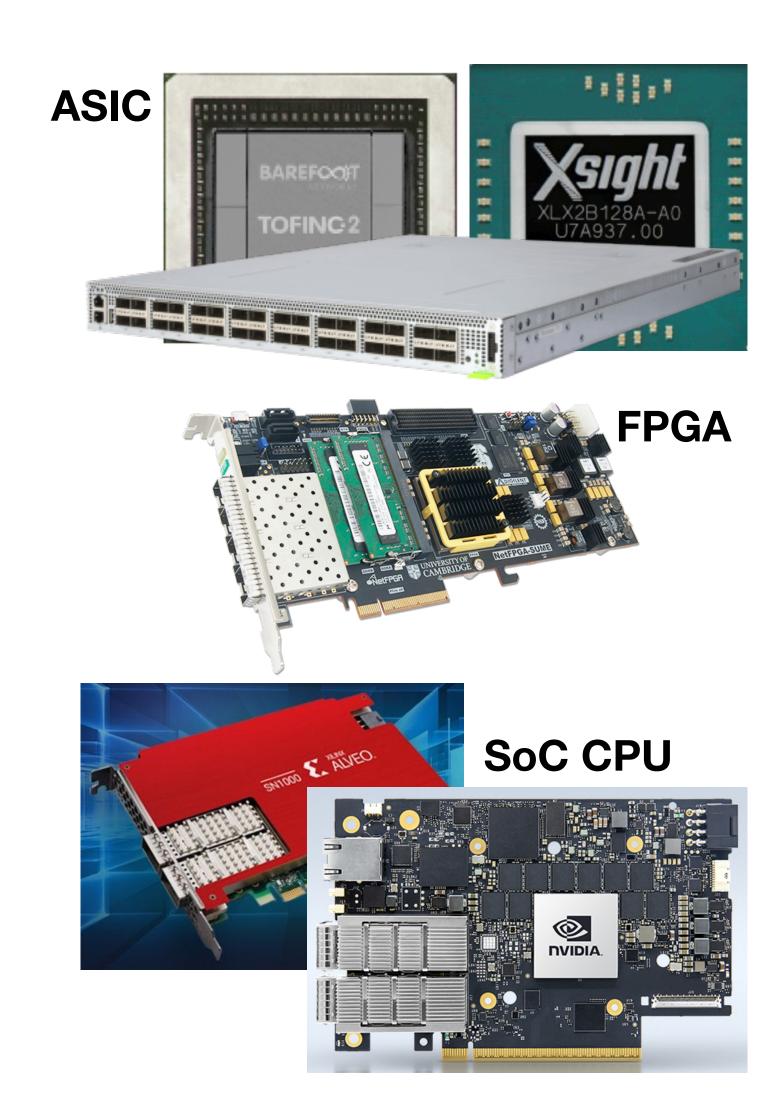
A couple of examples

Switches:

- Edgecore Wedge 100BF-32 Tofino,
 32 ports of 100 GbE (6.4 Tbps)
- X-Switch, 128 ports of 100 GbE (12.8 Tbps)

Smart NICs:

- NetFPGA-SUME Virtex-7 FPGA Board
- Xilinx Alveo SN1022 100 GbE
- NVIDIA BlueField-2 E-Series DPU 100 GbE



Programmable network devices

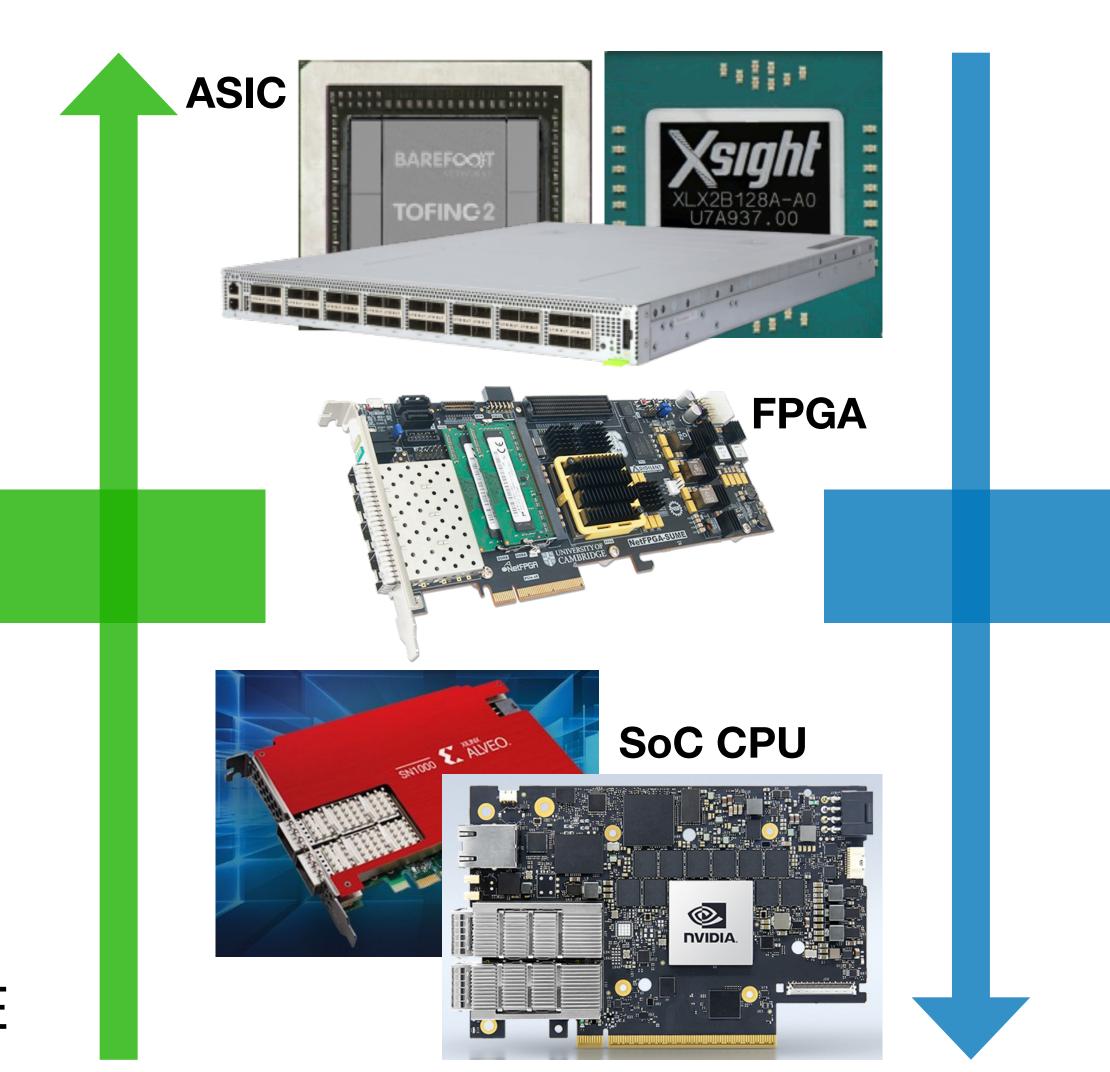
A couple of examples

Switches:

- Edgecore Wedge 100BF-32 Tofino,
 32 ports of 100 GbE (6.4 Tbps)
- X-Switch, 128 ports of 100 GbE (12.8 Tbps)

Smart NICs:

- NetFPGA-SUME Virtex-7 FPGA Board
- Xilinx Alveo SN1022 100 GbE
- NVIDIA BlueField-2 E-Series DPU 100 GbE



Domain-specific languages for networks

- Domain-specific languages/instructions
- Limited procedural code, i.e., abstraction of a sequence of actions
- Commands with scope isolated to handling packets
- We are trading expressiveness and flexibility for safety, security, and efficiency
- Examples include: P4, NPL, POF (+ micro-C, C++)

A new ecosystem of enabling technologies

Software development suites

Intel P4 Studio, Intel P4 Insight, DOCA, Xilinx Vivado, Xilinx SDNet, X-SDK

Domain-specific languages and APIs

P4, NPL, POF, P4Runtime, C++, gRPC, micro-C, ...

Programmable ASICs and forwarding devices

Xsight X2, Intel Tofino 2, Broadcom Trident 4, Cavium XPliant, Innovium Teralynx, NetFPGA SUME, ...

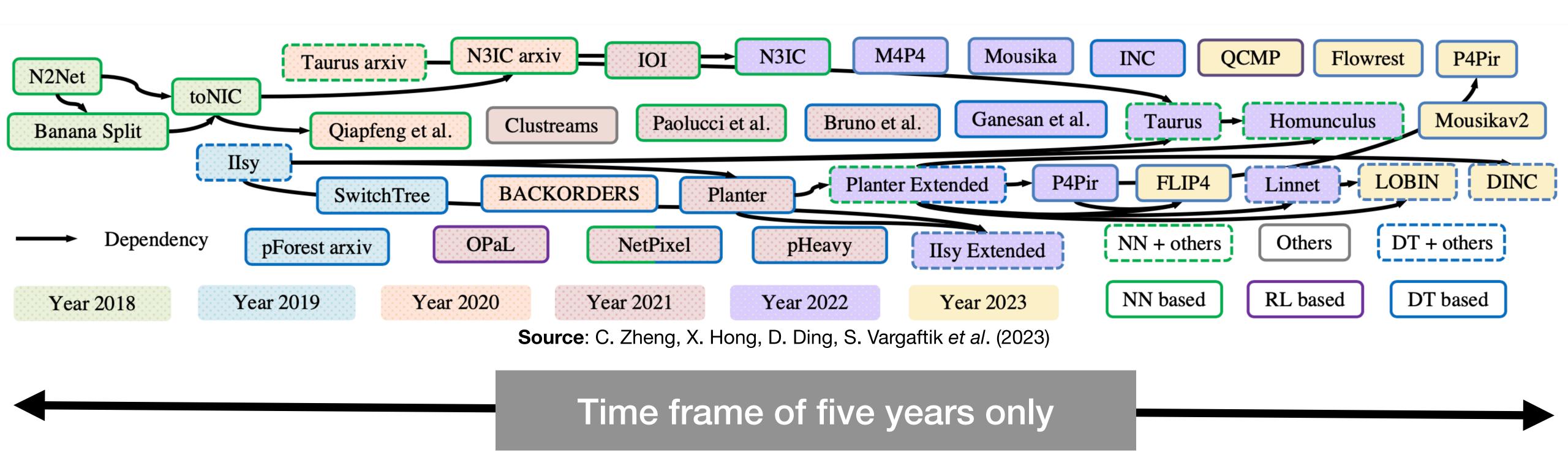
ML using programmable network devices

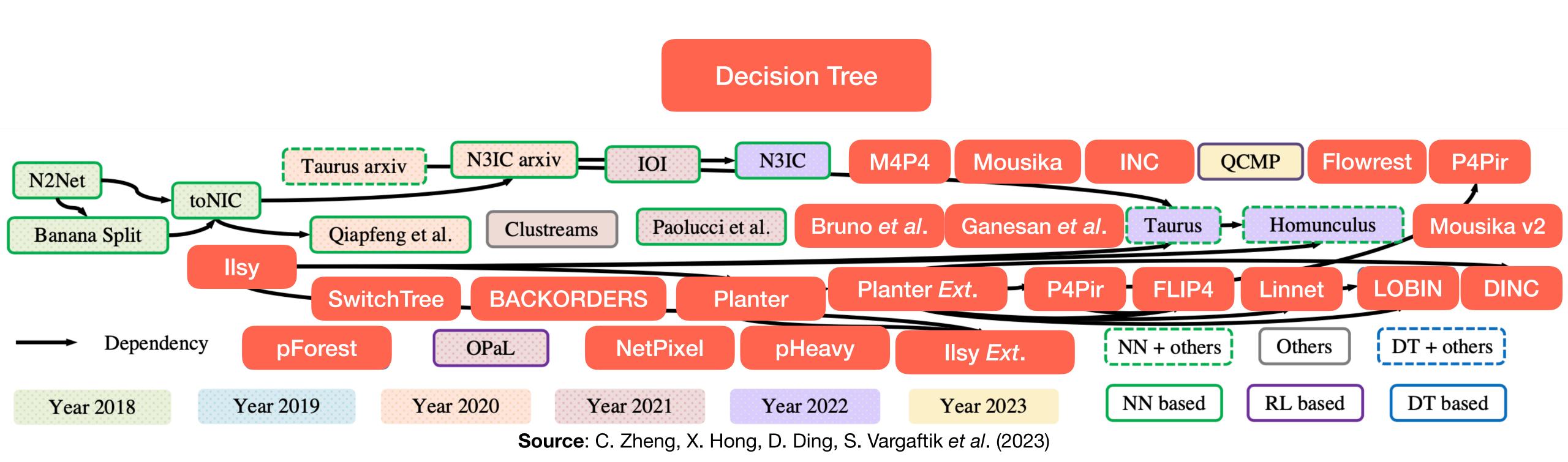
The scope of research in the area: phases

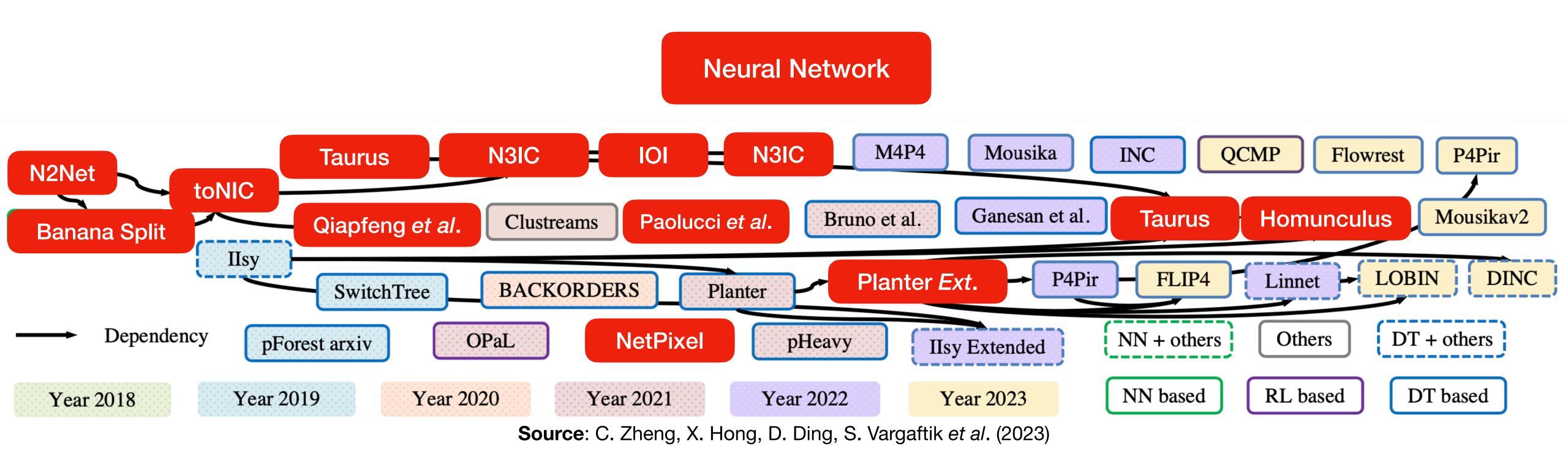
- Training: offload operations for efficient distributed training
 - E.g., aggregation functions and parameter optimization
 - The typical case of "networks for AI/ML"

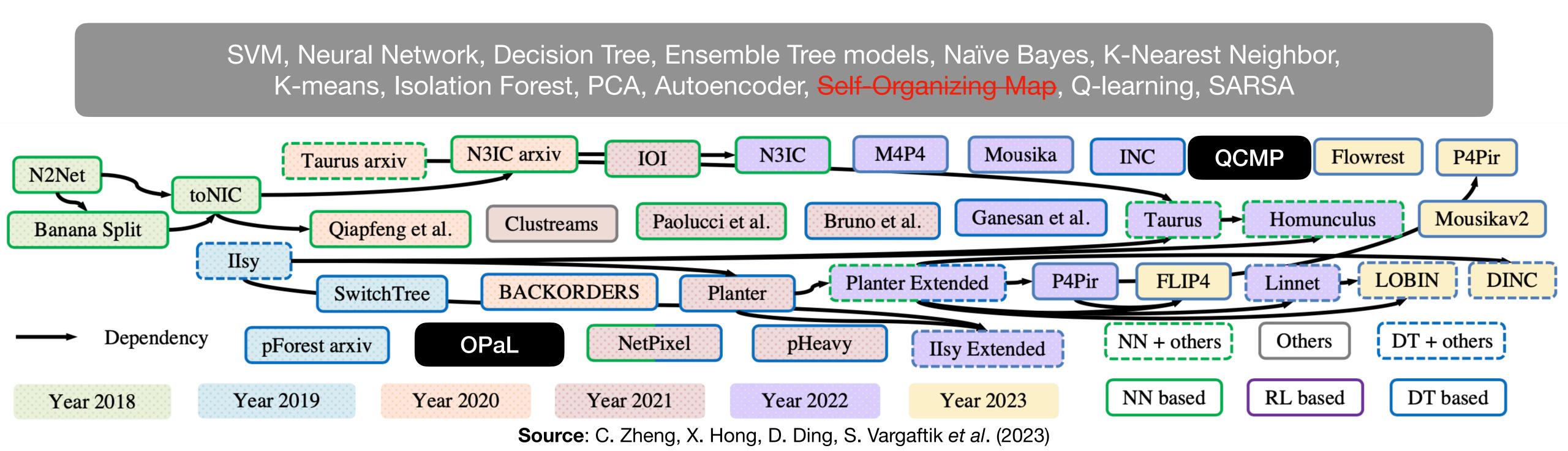
The scope of research in the area: phases

- Training: offload operations for efficient distributed training
 - E.g., aggregation functions and parameter optimization
 - The typical case of "networks for AI/ML"
- Inference: deploy in-network ML models to network devices
- The remaining of this talk focuses on inference







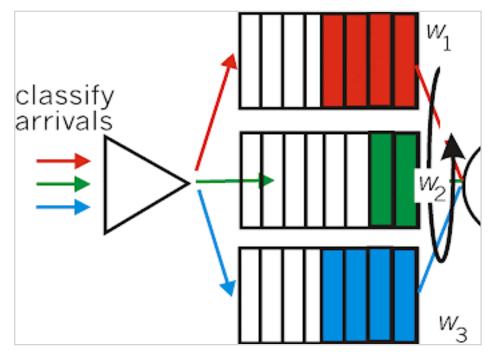


In-network inference: apps and ML techniques

Source: https://towardsdatascience.com

AE, BNN, Clustering, DNN, DT, ET, KM, NB, KNN, NN, PCA, RL, SVM

Intrusion detection Traffic classification



Source: Kurose and Ross, 2020.

AE, BNN, DNN, DT, ET, KM, KNN, LSTM, NB, PCA, RF, SVM, XGB

Traffic engineering

Source: https://engineering.nyu.edu

Congestion control

Source: https://granulate.io

Video streaming

Source: https://www.forbes.com

+ resource management

+ fault management

+ channel modeling

C. Zheng, X. Hong, D. Ding, S. Vargaftik, Y. Ben-Itzhak, N. Zilberman: In-Network Machine Learning Using Programmable Network Devices: A Survey. IEEE Communications Surveys & Tutorials (2023).

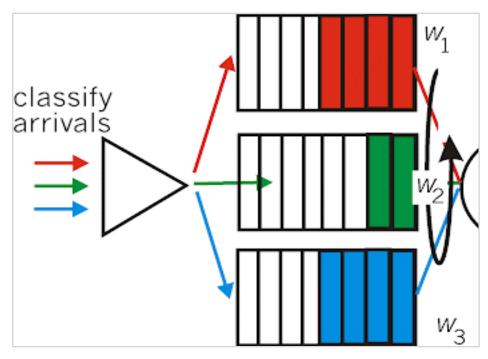
Ricardo Parizotto, Bruno Loureiro Coelho, Diego Cardoso Nunes, Israat Haque, and Alberto Schaeffer-Filho: Offloading Machine Learning to Programmable Data Planes: A Systematic Survey. ACM Comput. Surv. 56, 1, Article 18 (2024).

In-network inference: apps and ML techniques

Source: https://towardsdatascience.com

AE, BNN, Clustering, DNN, DT, ET, KM, NB, KNN, NN, PCA, RL, SVM

Intrusion detection Traffic classification



Source: Kurose and Ross, 2020.

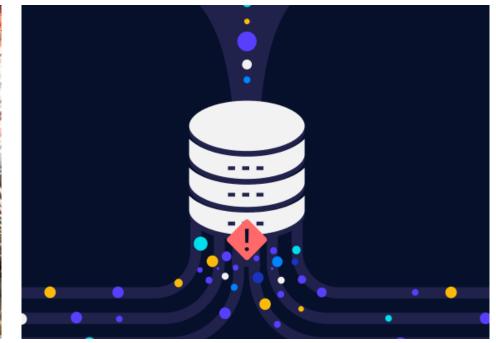
AE, BNN, DNN, DT, ET, KM, KNN, LSTM, NB, PCA, RF, SVM, XGB

Traffic engineering

Source: https://engineering.nyu.edu

RL

Congestion control



Source: https://granulate.io

LSTM

Video streaming

Source: https://www.forbes.com

+ resource management

+ fault management

+ channel modeling

C. Zheng, X. Hong, D. Ding, S. Vargaftik, Y. Ben-Itzhak, N. Zilberman: In-Network Machine Learning Using Programmable Network Devices: A Survey. IEEE Communications Surveys & Tutorials (2023).

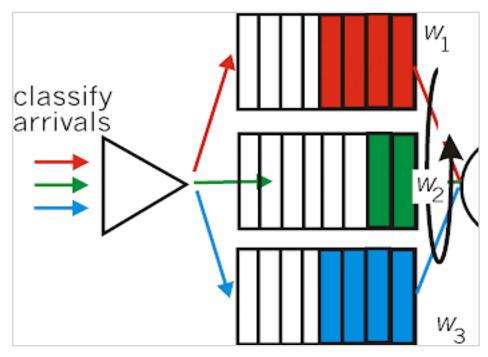
Ricardo Parizotto, Bruno Loureiro Coelho, Diego Cardoso Nunes, Israat Haque, and Alberto Schaeffer-Filho: Offloading Machine Learning to Programmable Data Planes: A Systematic Survey. ACM Comput. Surv. 56, 1, Article 18 (2024).

In-network inference: apps and ML techniques

Source: https://towardsdatascience.com

AE, BNN, Clustering, DNN, DT, ET, KM, NB, KNN, NN, PCA, RL, SVM

Intrusion detection Traffic classification



Source: Kurose and Ross, 2020.

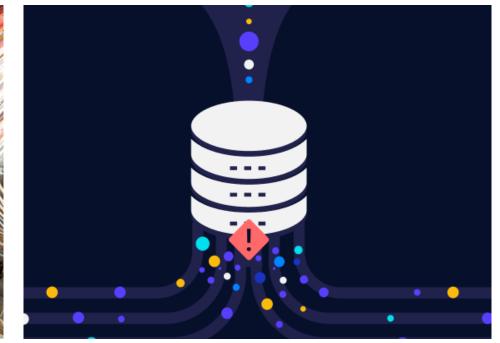
AE, BNN, DNN, DT, ET, KM, KNN, LSTM, NB, PCA, RF, SVM, XGB

Traffic engineering

Source: https://engineering.nyu.edu

RL

Congestion control



Source: https://granulate.io

LSTM

Video streaming

Source: https://www.forbes.com

Opportunity?

+ resource management

Opportunity?

+ fault management

Opportunity?

+ channel modeling

Opportunity?

C. Zheng, X. Hong, D. Ding, S. Vargaftik, Y. Ben-Itzhak, N. Zilberman: In-Network Machine Learning Using Programmable Network Devices: A Survey. IEEE Communications Surveys & Tutorials (2023).

Ricardo Parizotto, Bruno Loureiro Coelho, Diego Cardoso Nunes, Israat Haque, and Alberto Schaeffer-Filho: Offloading Machine Learning to Programmable Data Planes: A Systematic Survey. ACM Comput. Surv. 56, 1, Article 18 (2024).

Are we there yet? What's next?

New promising network technologies and low-latency, high-throughput networked applications

Source: https://www.dashtech.org

Source: https://medium.com/swlh/lets-explore-a-new-reality-the-future-of-vr-ar-9f73ed38364d

Source: https://olhardigital.com.br

4th International Workshop on High-Precision, Predictable, and Low-Latency Networking (HiPNet 2022). http://www.cnsm-conf.org/2022/workshop_HiPNet.html. Alexander Clemm, Maria Torres Vega, Hemanth Kumar Ravuri, Tim Wauters, Filip De Turck. Toward **Truly Immersive Holographic-Type Communication: Challenges and Solutions**. IEEE Commun. Mag. 58(1): 93-99 (2020).

Adequate abstractions for in-network ML	
	33

Adequate abstractions for in-network ML	
	Implementation and deployment of large-scale ML models

Adequate abstractions for in-network ML		
	New compelling applications and use cases	Implementation and deployment of large-scale ML models

Adequate abstractions for in-network ML	Support for runtime programmability	
	New compelling applications and use cases	Implementation and deployment of large-scale ML models

Adequate abstractions for in-network ML	Support for runtime programmability	
	Handling of encrypted traffic	
	New compelling applications and use cases	Implementation and deployment of large-scale ML models

Support for runtime Adequate abstractions for in-network ML programmability Handling of encrypted traffic Implementation and New compelling applications Convenient compilation &

deployment systems

and use cases

deployment of large-scale ML models

Adequate abstractions for in-network ML

Support for runtime programmability

Reduction of resource and communication overhead

Handling of encrypted traffic

Convenient compilation & deployment systems

New compelling applications and use cases

Implementation and deployment of large-scale ML models

Adequate abstractions for in-network ML

Support for runtime programmability

Reduction of resource and communication overhead

From *ad-hoc* constructs to reusable management libraries

Handling of encrypted traffic

Convenient compilation & deployment systems

New compelling applications and use cases

Implementation and deployment of large-scale ML models

Adequate abstractions for in-network ML

Support for runtime programmability

Reduction of resource and communication overhead

From *ad-hoc* constructs to reusable management libraries

Handling of encrypted traffic

Balancing short (data plane) and long (control plane) control loops (inference x training)

Convenient compilation & deployment systems

New compelling applications and use cases

Implementation and deployment of large-scale ML models

Final remarks

- In-network AI/ML can potentially allow for the execution of some networking tasks a lot better (e.g., detection, prediction, etc.)
- And, very notably, with per-packet visibility and unprecedented low latency
- There are plenty of research opportunities to be explored!
- We can and will deliver breakthrough innovations based on in-network AI/ML to network and service management
- It is not a matter of "if" but "when"



Source: ChatGPT

Picture taken by Prof. Mauro Tortonesi during NOMS 2023 (held in Miami)

Luciano Paschoal Gaspary - UFRGS, Brazil

paschoal@inf.ufrgs.br · http://www.inf.ufrgs.br/~paschoal · @lpgaspary

WTR 2025 · 22 October 2025 · Porto Alegre